Monatshefte für Chemie 107, 705-719 (1976) © by Springer-Verlag 1976

Modellberechnungen zu den Schwingungsspektren von Phenylsilanen und einigen verwandten Verbindungen

Von

F. Höfler

Institut für Anorganische Chemie, Technische Universität Graz, Österreich

Mit 3 Abbildungen

(Eingegangen am 9. Oktober 1975)

Model Calculations on the Vibrational Spectra of Phenylsilanes and Some Related Compounds

Normal coordinate calculations on symmetric vibrations of $(C_6H_5)_nMX_{4-n}$ type molecules (M = C, Si, Ge, Sn, Pb, P and <math>X = H, F, Cl, Br, OH) have been performed using a simplified model for ,,*M*-sensitive" modes of the phenyl group. A good agreement of calculated and observed frequencies is obtained with reasonable and transferable force constants. Significant effects of vibrational coupling are illustrated by *PED* calculations.

Durch die neueren apparativen Entwicklungen der Infrarot- und Raman-Spektroskopie sind schwingungsspektroskopische Untersuchungen in der metallorganischen Chemie zu großer Bedeutung gelangt, ist doch nun auch der längerwellige Spektrenbereich leichter zugänglich, in welchem häufig typische Schwingungen des Molekülgerüstes liegen. Vielfach ist eine sinnvolle Diskussion der Schwingungsspektren aber wegen des Vorliegens kinetischer Kopplungseffekte nur mit Hilfe von Normalkoordinatenbehandlungen durchführbar. Eine Grundlage hiefür sind möglichst gut gesicherte Kraftkonstantensätze für die wichtigsten Substituenten eines Zentralatoms. Unser Interesse gilt in diesem Zusammenhang den Kraftfeldern von Si-Halogen-¹, Si-O-^{2, 3, 4}, Si-N-⁴, Si-C-2 und Si-Si-Verbindungen 3, 5, 6, 7, 8. Bei Substituenten mit einer größeren Zahl "innerer" Schwingungsfreiheitsgrade (OR, NR₂, C_nH_{2n+1}, C₆H₅) liegt der Gedanke nahe, nach vereinfachten Berechnungsansätzen zu suchen, die dennoch eine günstige Beschreibung der Kopplungsbeziehungen ermöglichen. In einer vorangegangenen Arbeit⁹ war es gelungen, ein solches Ersatzmodell für eine Phenylgruppe zu entwickeln, das sich mittlerweile in verschiedenartigen Systemen^{8, 10, 11, 12} bewährt F. Höfler:

hat. Über seine Anwendung auf eine Anzahl von Phenylsiliciumverbindungen und verwandten Derivaten anderer Elemente der 4. Hauptgruppe soll nun berichtet werden.

Die Modellbetrachtung⁹ erstreckt sich auf jene drei ebenen, symmetrischen, und daher vor allem im Raman-Spektrum leicht erkennbaren Schwingungen eines Moleküls C_6H_5 —M, die in ihrer Lage stark von der Natur von M abhängen. Sie stellen ein gekoppeltes Schwingungs-

Abb. 1. Ersatzmodell für ein Molekül C_6H_5 —M

Massen $m_{\rm C} = 12, m_Y = 24$ Symmetriekoordinaten: $S_1 = \frac{1}{\sqrt{2}} \left(\Delta r_1 + \Delta r_2 \right)$ $S_2 = \Delta \alpha \cdot r_0$ $S_3 = \Delta R$ Modellkraftkonstanten (N/cm): $F_{11} = 7,32$ $F_{12} = 0,836$ $F_{22} = 1,1$

system dar, an dem vorwiegend die Koordinaten einer Pulsation und einer Deformation des Phenylringes sowie die C—M-Valenzkoordinate beteiligt sind, und werden in der meist verwendeten Whiffenschen Nomenklatur¹³ mit q, r und t bezeichnet.

Im "Phenylmodell" (Abb. 1) wird der Phenylring durch eine Dreimassengruppe CY_2 (\measuredangle YCY $\alpha = 120^\circ$) repräsentiert, den drei genannten Schwingungen sind die drei symmetrischen Schwingungen der ebenen Massenpunktanordnung Y_2C-M korreliert.

Die zugehörigen Symmetriekoordinaten und die stets festgehaltenen Modellkraftkonstanten für die CY₂-Gruppe sind ebenfalls in Abb. 1 enthalten. Die drei verbleibenden Kraftkonstanten $F_{33} = f(MC)$, F_{13} und F_{23} werden, wie in ⁹ beschrieben, durch Anpassung an die drei beobachteten A_1 -Frequenzen errechnet. Für Phenylsilan erhält man unter der Annahme einer Punktmasse für die SiH₃-Gruppe ($m_M = 31$) eine SiC-Valenzkraftkonstante (F_{33}) von 3,06 N/cm, die im Einklang mit den Bindungsvorstellungen etwas größer ist als in Methylsilan. Bei Phenylgerman wird eine etwas schlechtere Wiedergabe der Meßwerte erzielt (Tab. 1). Die Berechnung der PEV bestätigt für beide Verbindungen, daß v_3 ("t") am stärksten der Charakter einer *M*—C-Valenzschwingung zukommt; der Anteil von F_{33} an v_3 , V_3 (F_{33}), nimmt von Phenylsilan (0,56) zu Phenylgerman (0,65) zu.

${F}_{ij}/{ m v}_i$	$\mathrm{C_6H_5SiH_3}$	$C_6H_5GeH_3$
Foo	3.06	2.70
F_{13}	0,58	0,60
£'23	0,06 1117/1117 ¹⁴	0,14 1100/1096 ¹⁵
v2	693/ 692	679/ 673
V3	392/ 388	297/ 292

Tabelle 1. Kraftkonstanten [N/cm] und Frequenzen ($\nu_{bec.}/\nu_{beob.}$ in cm⁻¹) von C₆H₅SiH₃ und C₆H₅GeH₃

Abb. 2. Ersatzmodell für ein Molekül C_6H_5 -- MX_3

Symmetriekoordinaten: S_1, S_2, S_3 wie in Abb. 1, $S_4 = \frac{1}{\sqrt{3}} (\Delta s_1 + \Delta s_2 + \Delta s_3)$ $S_5 = \frac{s_0}{\sqrt{6}} (\Delta \beta_1 + \Delta \beta_2 + \Delta \beta_3 - \Delta \gamma_1 - \Delta \gamma_2 - \Delta \gamma_3)$

Eine — wegen der ähnlichen Massen häufig durchgeführte — Gegenüberstellung der entsprechenden Bromverbindungen zeigt, daß die M—Br-Valenzschwingungen¹⁶ von H₃SiBr (430 cm⁻¹) und H₃GeBr (308 cm⁻¹) höher liegen als v₃ der Phenylderivate, obwohl die Valenzkraftkonstanten f (*M*Br) niedriger sind als f (*M*C).

Bei der Behandlung der typischen totalsymmetrischen Schwingungen von Phenyltrihalogenverbindungen $C_6H_5MX_3$ müssen auch die beiden symmetrischen Schwingungsformen der MX_3 -Gruppe berücksichtigt werden; es liegt somit ein System von fünf gekoppelten Schwingungen vor. Die zusätzlichen Symmetriekoordinaten sind in Abb. 2 aufgeführt; es wird eine unbehinderte Rotation um die C—M-Bindung angenommen, so daß die Orientierung der MX_3 -Gruppe keine Rolle spielt. In den Kraftkonstantenrechnungen wurden F_{11} , F_{12} und F_{22} wieder fest vorgegeben, Wechselwirkungskonstanten zwischen den Koordinaten der beiden Modellteile CY_2 (mit S_1 und S_2) und MX_3 (mit S_4 und S_5) wurden vernachlässigt. F_{13} , F_{23} und F_{33} wurden von den MH_3 -Verbindungen, F_{44} , F_{45} und F_{55} von den Halogeniden MX_4 in die Ausgangs-F-Matrizen übertragen. Eine gute Anpassung an die beobachteten Frequenzen wurde schon durch kleine Änderungen der genannten sechs Symmetriekraftkonstanten und mit plausiblen Werten von F_{34} und F_{35} erreicht. Tab. 2 zeigt die Ergebnisse an einigen Phenyltrifluoriden und -chloriden.

Die Reihenfolge der Frequenzen entspricht ihrer überwiegenden Charakteristik, d. h. der berechnete PEV-Anteil von S_i an v_i ist jeweils am größten. Dieses Ordnungsprinzip ist allerdings bei den ersten drei Verbindungen mit ihren sehr stark verkoppelten Schwingungssystemen problematisch, da hier schon kleine Änderungen des Kraftfeldes einen Charakterentausch erbringen können.

Im einzelnen ist im Spektrum von C₆H₅CF₃ die höchste Schwingung (1324 cm⁻¹) als ν CC (S₃) mit Anteilen von ν_8 CF₃ (S₄) und ,, ν -Ring" (S_1) zu beschreiben. Zu v_1 (1071 cm⁻¹) und v_4 (770 cm⁻¹) tragen S_1 und S_4 in vergleichbarem Ausmaß bei, zu den beiden tieferen Schwingungen v_5 (658 cm⁻¹) und v_2 (339 cm⁻¹) $\delta_s CF_3$ (S₅) und , δ -Ring" (S₂). Unsere PEV-Ergebnisse revidieren eine ältere Literaturzuordnung¹⁷. Auch in C₆H₅CCl₃ weist die höchste Schwingung (1185 cm⁻¹) am stärksten den Charakter einer ν CC (S₃) auf, doch liefert auch " ν -Ring" (S₁) einen Energiebeitrag. v_1 besitzt neben dem Hauptanteil von S_1 auch kleinere *PEV*-Anteile (~ 0,2) von S_3 und S_4 , v_2 solche von S_1 und S_4 . Schließlich entfallen auf die beiden niedrigfrequenten Schwingungen v_4 und v_5 auch Anteile von S_2 . Im Falle von $C_6H_5SiF_3$ sind vor allem die beiden tiefsten Schwingungen v5 und v3 durch starke Mischungen der Koordinaten S_4 , S_3 und S_2 gekennzeichnet; $v_s SiF_3$ (862 cm⁻¹) ist völlig kopplungsfrei. Als Vergleichszahlen seien noch die Frequenzen der drei totalsymmetrischen Schwingungen der Bromderivate genannt. Sie liegen in BrCF₃²² bei 1067, 760 und 350, in BrCCl₃²³ bei 716, 422 und 247, schließlich in BrSiF₃²⁴ bei 858, 505 und 288 cm⁻¹.

In C₆H₅SiCl₃ ist die mit Hilfe des Phenylmodells berechnete Potentialenergieverteilung von v_1 und v_2 praktisch gleich wie in C₆H₅SiH₃ und C₆H₅SiF₃. Zur Illustration seien die gerundeten *PEV*-Anteile angeführt: V_1 (F_{11}) = 0,65, V_1 (F_{22}) = 0,35 und V_1 (F_{33}) = 0,35 bzw. V_2 (F_{11}) = 0,15, V_2 (F_{22}) = 0,50 und V_2 (F_{33}) = 0,15. In den beiden zu längeren Wellen hin folgenden Schwingungen bei 513 und 347 cm⁻¹ in cm⁻¹ von C₆H₅MF₃- und C₆H₅MCl₃- Verbindungen 4 2 Tabelle 2. Kraftkonstanten [N/cm] und Frequenzen [v.

TOOPT	nominagenovalative	ambalit mum [tito/vr] a	ween Lyber./vbeob. w	E 7 77 9 1 19 0 100 1 1 110	- 4-ETO THYGTTGO MAN -	an Balan mara n
F_{ij}/v_i	$C_6H_5CF_3$	$C_6H_5SiF_3$	$C_6H_5CCl_3$	$C_6H_5SiCl_3$	$C_6H_5GeCl_3$	$C_6H_5SnCl_3$
F_{33}	4,82	3,44	4,83	3,15	2,70	2,20
F_{13}	0,51	0,60	0,85	0,65	0.56	0,47
F_{23}	-0,40	0,09	0.22	0,13	0,06	0,07
F_{84}	0,91	0,69	0.38	0.23	0,14	0,10
F_{35}	0,02	-0.15	-0.41	0,13	-0.15	-0.09
F_{44}	7,86	6,90	3,88	3,30	2,95	2,52
F_{45}	0,37	0,11	0,19	0,08	0,06	0,03
F_{55}	0,96	0,40	0,44	0,225	0,16	0,11
V1	$1076/1071^{17}$	$1142/1145^{18}$	868/ 868 ¹⁹	$1128/1123^{18}, 20$	$1086/1085^{21}$	$1070/1067^{21}$
V2	344/339	696/ 695	629/ 629	708/717	672/677	661/ 660
73 I	1322/1324	269/ 269	1185/1185	347/ 347	290/ 289	252/249
V4	773/ 770	866/ 862	411/409	512/513	408/ 407	363/ 363
V5	651/ 658	473/475	263/ 264	190/ 189	158/159	124/124

Schwingungsspektren von Phenylsilanen

709

sind $\nu_s SiCl_3$ (S₄) und ν SiC (S₃) verkoppelt, hinzu treten jeweils auch noch Anteile von " δ -Ring" (S₂):

513 cm⁻¹:
$$V_4$$
 (F_{44}) = 0,66, V_4 (F_{33}) = 0,13, V_4 (F_{22}) = 0,22
347 cm⁻¹: V_3 (F_{33}) = 0,35, V_3 (F_{44}) = 0,28, V_3 (F_{22}) = 0,28

Die tiefste Bande bei 189 cm⁻¹ ist als weitgehend charakteristische symmetrische SiCl₃-Deformationsschwingung anzusehen. Das durch die Modellrechnung entworfene Kopplungsbild ist mit der spektroskopischen Untersuchung von C₆D₅SiCl₃ qualitativ bestätigt worden¹⁴.

Mit schwerer werdendem Zentralatom nimmt die Kopplung der C₆H₅---*M*- mit den *M*Cl₃-Schwingungen naturgemäß ab. So entsprechen in C₆H₅SnCl₃ die Banden bei 363 und 124 cm⁻¹ den charakteristischen Gruppenschwingungen ν_s SnCl₃ und δ_s SnCl₃; die Energieanteile V_4 (F_{44}) und V_5 (F_{55}) betragen jeweils 0,99.

Der spektrale Übergang von C₆H₅CCl₃ zu C₆H₅SnCl₃ ist für die $< 700 \text{ cm}^{-1}$ liegenden Schwingungen bereits von *Smith*²⁵ vorgenommen worden, die Schwingungskopplungen wurden jedoch nur summarisch behandelt.

Die mehrfache Substitution eines Zentralatoms M mit Phenylgruppen erhöht naturgemäß die Zahl der (3N--6) Schwingungsmöglichkeiten eines Moleküls $(C_6H_5)_nMX_{4-n}$ (n = 2-4) beträchtlich. Da die Mehrzahl der lagenkonstanten Phenylschwingungen jedoch zufällig entartet sind und auch die "M-sensitiven", mit q und r bezeichneten Banden relativ geringe Aufspaltungen $(10-25 \text{ cm}^{-1})$ zeigen, wird das Spektrenbild im kürzerweiligen Bereich (> 600 cm^{-1}), von einigen Bandenverdopplungen abgesehen, nicht komplizierter^{18, 20}. Im längerwelligen Bereich machen sich zusätzliche Kopplungseffekte bemerkbar, die bei den modellmäßigen Schwingungsberechnungen weitere vereinfachende Annahmen erfordern.

So werden die Bindungswinkel am zentralen Atom M als Tetraederwinkel beibehalten. Röntgenstrukturuntersuchungen liegen bisher nur an den Tetraphenylverbindungen $M(C_6H_5)_4$ ($M = C^{26}$, Si²⁷, Ge²⁸, Sn²⁹, Pb³⁰) vor; in ihnen stellt die MC_4 -Einheit ein reguläres Tetraeder dar, die Symmetrie des Gesamtmoleküls ist wegen der verdrillten Anordnung der Phenylgruppen auf S_4 erniedrigt. Die Verbindungen des Typs $(C_6H_5)_3MX$ und $(C_6H_5)_2MX_2$ werden dementsprechend höchstens die Molekülsymmetrien C_3 bzw. C_2 aufweisen. Eine C_6H_5 —M-Gruppe besitzt nun neben den eingangs diskutierten totalsymmetrischen Schwingungen q, r und t auch noch drei gleichfalls "M-sensitive" Deformationsschwingungen, von denen die ebene Schwingungsform nach Whiffen¹³ mit u bezeichnet wird und die beiden nicht-ebenen die Bezeichnungen x und y tragen (Schwingungsbilder vgl. ¹⁴). Es sei erwähnt, daß sie in einigen $C_6H_5MX_3$ -Verbindungen vor allem mit ρMX_3 verkoppelt sind. Liegen mehrere Phenylgruppen in propellerartiger Anordnung vor, so ergeben sich für diese Deformationsschwingungen totalsymmetrische Komponenten, die nach ihrer energetischen Lage mit den Gerüstschwingungen $\delta_s MC_n$, $\delta_s MX_{4-n}$ und auch $\nu_s MC_n$ sowie ggf. $\nu_s MX_{4-n}$ in koppelnde Wechselwirkung treten können. Einige experimentelle Anhaltspunkte hiezu kann man aus der Vermessung der entsprechenden C_6D_5 -Verbindungen gewinnen^{14, 31}.

C ₆ H₅SiH₃	$(C_6H_5)_2SiH_2$	$(C_6H_5)_3SiH$	$(C_6H_5)_4Si$	Zuordnung*	Intens Raman	ität IR
490	476	485	511)		
420		472		Y	vw	s
900	421	428	435	ĺ.	w	m
288	375	383	236	} t	W	w
90.9	233	244	261	í		
203		230	223	{ u	w-m	W
1=0	167	168	185	ĺ.		
159	·		171	X	m	m
		120	57**	$,\delta_s SiC_n$	vw	vw
	·		98***	$,\delta_{as}\mathrm{SiC}_{n}$ "	vw-m	vvw

Tabelle 3. Gerüstschwingungen von Phenylsilanen ($< 500 \text{ cm}^{-1}$)

* Benennung der "*M*-sensitiven" Schwingungen nach *Whiffen* ¹³. ** E_{\perp}

*** F2.

Bei mehrfach phenylierten Silanen wird auf Grund von spektralen Übergängen und Intensitätsvergleichen angenommen, daß die Deformationsschwingungen mit überwiegendem $\delta_s \operatorname{SiC}_n$ -Charakter unterhalb 150 cm⁻¹ und damit tiefer als $\delta_s \operatorname{SiBr}_n$ in den entsprechenden Bromsilanen liegen. Eine Erschwernis resultiert aus den häufig sehr geringen Intensitäten dieser Banden; die in der Literatur vorhandenen Spektren sind zudem von sehr unterschiedlicher Qualität. Bei Festsubstanzen wirken sich mitunter auch Überlagerungen von Gitterschwingungen störend aus. Tab. 3 soll am Beispiel der Verbindungsreihe $(C_6H_5)_n\operatorname{SiH}_{4-n}$ $(n = 1-4)^{14, 18, 25, 32}$ ein qualitatives Bild der kopplungsbedingten Frequenzgänge und Intensitäten vermitteln.

In einigen Proberechnungen wurde der Versuch unternommen, den genannten Kopplungen durch Einführung einer Modellkoordinate ρCY_2 Rechnung zu tragen. Eine Korrelation der errechneten tiefen Frequenzwerte (< 150 cm⁻¹) mit beobachteten Banden ließ sich jedoch nicht sicher genug durchführen. In weiterer Folge nahmen wir daher bei den Modellberechnungen symmetrischer Schwingungen von $(C_6H_5)_2MX_2$ - und $(C_6H_5)_3MX$ -Molekülen wie vorhin eine rasche freie Drehbarkeit der Phenylgruppen bzw.

der Phenylersatzmodelle an, wodurch Kopplungen innerer Schwingungen benachbarter Phenylgruppen außer acht gelassen werden. Die Koordinate S_4 , die in Abb. 3 für eine MC_2 - bzw. MC_3 -Deformationsschwingung formuliert ist, soll modellhaft auch die Effekte der tiefen M-sensitiven Schwingungen mit einschließen. In die Kraftkonstantenmatrix wird der Wert der MC_n -Deformationskonstanten von den entsprechenden Methylverbindungen² übernommen, in die korrespondierenden Elemente der G-Matrix (G_{44} und G_{66} beim C_{2v} -Typ, G_{44} beim C_{3v} -Typ) als Substituentenmasse die volle Masse eines Phenylkernes (77) eingesetzt. Bei den Tetraphenylverbindungen $M(C_6H_5)_4$ wurde neben

$\overline{F_{ij}/\nu_i}$	$(C_6H_5)_2SiH_2$	$(C_6H_5)_2SiF_2$	$(C_6H_5)_2Si(OH)_2$	$(C_6H_5)_2SiCl_2$
F_{33}	3.12	3.35	3.30	3.25
F_{13}	0.57	0.48	0.46	0.50
F_{23}	0.05	0,10	0	0.03
F_{34}	0.04	õ	Õ	0
F_{35}^{34}	0	0.50	0.25	0.30
F_{36}	0	-0.06	-0.06	0.02
F_{44}	0.21	0.21	0.21	0.21
F_{45}	0	0,06	-0.04	0.06
F_{46}	0	0.01	0	0.01
F_{55}	2,68	6,50	5.20	2.95
F_{56}	0	0.07	0,03	0.08
F_{66}	0,19	0,38	0,38	0,15
ν1	$1115/1117^{18}$	$1126/1127^{18}$	1128/1131*	$1112/1114^{14}, 18$
٧2	685'/ 688	675/ 681	672/ 685	686'/ 697
٧3	384/ 375	396/ 396	401'/ 410	316'/320
v4 **	149/	144/	145'/130	129/ 105
ν5	2148/2147	920/918	870/ 868	534/533
٧6	944'/943	291/	298/ 304	167/166

Tabelle 4. Kraftkonstanten [N/cm] und symmetrische Schwingungen $[v_{ber./v_{beob.}}$ in cm⁻¹] einiger Diphenylsiliciumverbindungen (C₆H₅)₂SiX₂

* Eigene Messung an der Festsubstanz.

** Siehe Text.

den totalsymmetrischen Linearkombinationen der Phenylmodellkoordinaten nur noch die Tetraederpulsation berücksichtigt (Abb. 3, c). Der Rechenverlauf bestand wie bei den $C_6H_5MX_3$ -Systemen in einer Anpassung einer Ausgangs-F-Matrix an beobachtete Frequenzen. Die erhaltenen Kraftkonstanten der *MC*- und *MX*-Bindungen, der *XMX*-Winkel sowie der zugehörigen Wechselwirkungskraftkonstanten liegen in vernünftigen Bereichen, wenn die Kraftkonstanten des Phenylmodells festgehalten, die Größen F_{13} und F_{23} mit kleinen Veränderungen von den vorstehenden Berechnungen übernommen und einige andere Symmetriekraftkonstanten mit Erfahrungswerten versehen werden. Die Berechnungsergebnisse sind in den Tab. 4—6 zusammengestellt; nicht angeführte F_{ij} -Glieder sind gleich Null. Zur Beschreibung der Kopplungsverhältnisse dient wiederum die Verteilung der potentiellen Schwingungsenergie (PEV).

In den Diphenylsilanen (Tab. 4) weichen die Schwingungen v_1 und v_2 in der Lage und Charakterisierung nur wenig von den Mono-Phenylsilanen (Tab. 1, 2) ab. v_3 weist im Falle von $(C_6H_5)_2SiH_2$ vergleichbare Anteile der Koordinaten S_3 (v_sSiC_2) und S_2 (,, δ -Ring") auf. Bei $(C_6H_5)_2SiF_2$ und $(C_6H_5)_2Si(OH)_2$ kommt es in v_3 und v_6 zu sehr starken Mischungen von S_3 (v_sSiC_2) und S_6 (δ SiF₂ bzw. δ SiO₂); hiezu treten noch kleinere Anteile von S_2 . Die Schwingungen v_sSiH_2 , v_sSiF_2 und v_sSiO_2 (v_5) sind erwartungsgemäß ungekoppelt. In $(C_6H_5)_2SiCl_2$ trägt hingegen zu v_5 neben der Koordinate S_5 auch die Koordinate S_2 (,, δ -Ring") bei; die Schwingung v_3 wird dadurch etwas abgesenkt. Die Potentialenergieanteile sind:

533 cm⁻¹: V_5 (F_{55}) = 0,78, V_5 (F_{22}) = 0,18 320 cm⁻¹: V_3 (F_{33}) = 0,40, V_3 (F_{22}) = 0,30, V_3 (F_{55}) = 0,19.

An Diphenyldihalogengermanen sind bisher nur $(C_6H_5)_2$ GeCl₂ (ν_1 1088, ν_2 671, ν_3 270, ν_5 398 cm⁻¹) und $(C_6H_5)_2$ GeBr₂ (ν_1 1092, ν_2 670, ν_5 320 cm⁻¹) vermessen worden^{33, 48}. Zu Vergleichszwecken sei auf die Spektren verwandter Halogendigermane¹² bzw. von Diphenyldialkylgermanen³⁴ hingewiesen. Ferner liegen in der Literatur Schwingungsspektren von $(C_6H_5)_2$ CH₂ und einigen deuterierten Species^{25, 35}, $(C_6H_5)_2$ SnX₂ und $(C_6H_5)_2$ PbX₂ (X = Cl, Br, J) vor^{33, 36, 37}.

Wesentlich zahlreichere Untersuchungen existieren an den Triphenylelementverbindungen der 4. Hauptgruppe. Der Vergleich von Meßdaten und berechneten Frequenzen an einer Anzahl ausgewählter Verbindungen (Tab. 5) zeigt, daß fallweise etwas größere Abweichungen in Kauf genommen werden müssen.

Für Triphenylmethan³⁸ berechnet man eine zwischen 1150 und 1200 cm⁻¹ liegende Schwingung, die durch etwa gleiche Anteile der Koordinaten S_3 (ν_s CC₃) und S_1 (,, ν -Ring") gekennzeichnet ist. Im Raman-Spektrum der Festsubstanz liegen in diesem Bereich zwei nahezu gleich starke Linien (bei 1168 und 1186 cm⁻¹), von denen wir die niedrigere als ν_3 zuordnen, da sie im IR-Spektrum nicht auftritt. Die Raman-Linien bei 731, 607 und 272 cm⁻¹ ordnen wir in Einklang mit ³⁸ zu. Die Deformationsschwingung δ_s CC₃ (S_4) ist stark mit ,, δ -Ring" (S_2) gekoppelt; ν_4 (272 cm⁻¹) liegt höher als δ_s CBr₃ in Bromoform (222 cm⁻¹).

In allen übrigen in Tab. 5 aufgeführten Verbindungen weist die zwischen 1070 und 1120 cm⁻¹ gelegene Schwingung am stärksten den Charakter einer gleichphasigen Phenylringpulsation (Koordinate S_1) und die zwischen 650 und 690 cm⁻¹ gelegene überwiegend den Charakter einer gleichphasigen Phenylringdeformation (S_2) auf. Die Frequenz v₃

2		L'uel./ "ueuu. v" v.	man confirmation for the stop F			- J.J. South
	F_{ij}/ν_i	$(C_6H_5)_3CH$	$(C_6H_5)_3SiH$	$(C_6H_5)_3SiF$	$(C_6H_5)_3SiOH$	$(C_6H_5)_3SiCl$
Мо	<u>и</u>	к 0	6.6	07.0	906	3 2 5
na	r 33	2,5	0,0 	0,144 0,50	0,40 0 10	0,00
tsł	F'_{13}	0,9	0,48	0,46	0.50	0.50
10fi	F_{23}	-0,11	0,07	0.08	0,06	0,08
te f	F_{34}	0,27	0	0	0	0
lür	F_{35}	0	0	0,35	0,33	0,28
Ch	F_{44}	0,50	0,18	0,18	0,18	0,18
em	F_{45}	0	0	0.24	0.20	0.19
ie,	F_{55}	4,53	2.57	6.0	4,70	2,80
Bd	V1	$749/731^{38}$	$1101/1107^{18}$	$1110/1112^{18}$	$1100/1112^{18}$, *	$1101/1102^{18}, 20, **$
. 10	72 V2	602/ 607	668/ 685	665/ 673	665/679	672/683
07/:	5	1171/1168	368/ 380	325/355	324/ —	294/ 303
3	***	271/ 272		166/	167/	$158' \ 109$
-	۷ ت	2883/2884	2118/2118	926/926	849/852	541/542
	F_{ij/v_i}	$(C_6H_5)_3GeH$	$(C_6H_5)_3GeCl$	$(C_6H_5)_3SnH$	$(C_6H_5)_3SnCl$	$(C_6H_5)_3SnBr$
. 1	F_{33}	2,90	2,90	2,30	2,30	2,30
'	F_{13}	0,40	0,40	0,32	0,32	0,35
1	F_{23}	0,05	0.02	0,02	0	0
,	F_{34}	0	0	0	0	0
ı	F_{35}	0	0, 22	0	0,15	0,10
٢	F_{44}	0,14	0,14	0,09	0,09	0,09
٦	F_{45}	0	0,25	0	0.08	0.04
٦	F_{55}	2,42	2,30	2,0	1,95	1,55
~	Tr	$1090/1094^{39}$	$1096/1094^{33}$, ³⁹	$1073/1073^{40}$	$1077/1078^{41-45}$	$1073/1074^{41}$, 43 , 45
~	12	658/ 667	660/ 665	650/ 653	651/ 656	652/ 659
~	5	280/296	264/268	241/	235/233	210/209
4	14	136/	119/	98/	92/	87/
3	15	2033/2033	381/377	1843/1844	343/ 344	259/255
•	* Freque	nzen der Festsubstanz				
	** Elgone	Messung.				
	*** Siehe T	ext.				

Schwingungsspektren von Phenylsilanen

715

F. Höfler:

zeigt bei gleichem Zentralatom M mit zunehmender Masse des Substituenten X eine abnehmende Tendenz. In der Reihe der Siliciumverbindungen (C₆H₅)₃SiX ergibt sich folgender Gang von Meßwerten:

X	H	CH_3^{25}	OH	\mathbf{F}	OCH3 25	Cl
ν3	380	350		355	350	303

Neben dem Energieanteil der Koordinate S_3 [V_3 (F_{33}) ca. 0,40] ist auch jener von S_2 mit ca. 0,35 relativ hoch. Bei Triphenylchlorsilan kommt es ferner zu einer schwachen Kopplung mit S_5 (\vee SiCl)¹⁴. Mit schwerer werdendem Zentralatom M sinkt ν_3 ebenfalls ab. In der Potentialenergieverteilung nimmt dementsprechend V_3 (F_{33}) zu, V_3 (F_{22}) ab [M = Ge: 0,56/0,32; M = Sn [mit Ausnahme von (C₆H₅)₃SnBr]: 0,68/0,29]. Der berechnete Wert für ν_4 repräsentiert, wie erwähnt, einen "gemittelten" Frequenzwert von Gerüstdeformationen.

Die Schwingungen v_5 sind bei den Ge- und Sn-Verbindungen völlig ungekoppelt, da die schweren Zentralatome als wirksame Kopplungssperre fungieren. Eine Ausnahme bildet nur (C₆H₅)₃SnBr, in dem wegen der ähnlichen Substituentenmassen die Formen v_s SnC₃ (S₃) und v SnBr (S₅) stark gemischt sind und es so zu einer Art Gleich- und Gegentaktschwingung (209, 255 cm⁻¹) der vier Substituenten des Zinns kommt.

Die *M*Cl-Valenzkraftkonstanten sind, wie erwartet, niedriger als in den einheitlich oder gemischt substituierten Tetrahalogeniden dieser Elemente. Man ersieht dies qualitativ auch aus einem Vergleich mit den totalsymmetrischen Schwingungen der Tribromchlorverbindungen; die drittgenannte (höchste) Frequenz ist hiebei \vee *M*Cl: Br₃SiCl¹: 288, 158, 577 cm⁻¹; Br₃GeCl⁴⁶: 257, 122, 428 cm⁻¹; Br₃SnCl⁴⁶: 235, 91, 380 cm⁻¹.

Außer den beiden in Tab. 5 enthaltenen Germaniumverbindungen sind an einfachen Derivaten noch jene mit X = D, F, Br, NCO, NCS ^{33, 39} und CH₃³⁴ mehr oder weniger vollständig vermessen worden. Auch über Triphenylchlormethan ^{38, 42}, weitere Triphenylstannane (X = OH, F, J)^{41, 43, 45} sowie über Triphenylplumbane³⁷ liegen spektroskopische Daten vor, auf die in diesem Zusammenhang nur verwiesen werden soll.

Bei den Tetraphenylverbindungen $(C_6H_5)_4M$ umfaßt die Modellrechnung, wie die Symmetriekoordinaten in Abb. 3c belegen, nur drei Schwingungen. Für die Kraftkonstanten F_{13} und F_{23} , die die Wechselwirkung von v_8MC_4 mit den beiden Koordinaten des Phenylmodells beinhalten, ergeben sich etwas größere Werte als bei den Verbindungen mit 1—3 Phenylgruppen, wenn F_{33} in akzeptabler Relation zur entsprechenden Symmetriekraftkonstante der Tetramethylverbindungen stehen soll [Si(CH₃)₄ 3,11, Ge(CH₃)₄ 2,79, Sn(CH₃)₄ 2,29, Pb(CH₃)₄ 1,92 N/cm]⁵⁰. In der *PEV* nimmt V_3 (F_{33}) von Si zu Pb hin zu; durch

716

	Tabelle 6. <i>Kraftkor</i>	vstanten [N/cm] und total von Tetraphenylu	symmetrische Schwinge erbindungen (C ₆ H ₅)4M	ungen [vber./vbeod. in cm-	[1
F_{ij}/ν_i	$(C_6H_5)_4Si$	$(C_6H_5)_4Ge$	$(C_6H_5)_4Sn$	$(C_6H_5)_4Pb$	$(C_6H_5)_4P^+$
$F_{23}^{B_{33}}$ $F_{23}^{H_{23}}$	3,35 0,82 0,18	2,90 0,70 0,13	2,35 0,50 0,13	1,90 0,42 0,09	3,80 0,85 0,03
v1 V2 V3	$\begin{array}{c} 1113/1108^{20} \\ 685/ \ 679 \\ 242/ \ 236 \end{array}$	1092/1089 ^{25, 47} 675/ 668 233/ 229	$\begin{array}{c} 1084 / 1088 \\ 665 / \ 651 \\ 215 / \ 212 \end{array}$	$1062/1061^{25}, 37$ 655/645 201/199	1104/1103 ^{49, *} 681/ 683 261/ 261
$V_{3} (F_{33}) \ { m v_1} (M { m Br}_4)^{ 16}$	0,63 249	0,66 235	0.72 221	0,76	0,57 227
* Eigene N	lessung.				

Schwingungsspektren von Phenylsilanen

die tiefe Lage von v_3 ist der Energieanteil der Phenylringdeformation (S_2) , V_3 (F_{22}) , geringer als bei den phenylärmeren Verbindungen. In Tab. 6 ist auch $(C_6H_5)_4P^+$ mit aufgenommen, dessen totalsymmetrische Gerüstpulsation (261 cm⁻¹) unseres Wissens bisher noch nicht erkannt und zugeordnet worden ist. Schließlich enthält Tab. 6 zum Vergleich auch die Pulsationsfrequenzen der Tetrabromverbindungen.

Zusammenfassend kann festgestellt werden, daß die beschriebenen Schwingungsberechnungen an den Verbindungen der allgemeinen Formel $(C_6H_5)_nMX_{4-n}$ unter Zuhilfenahme des "Phenylmodells" das Verständnis ihrer Schwingungsspektren sehr erleichtern und eine Anzahl von Literaturzuordnungen richtigstellen. Die enthaltenen Kopplungszusammenhänge können mit sinnvollen Kraftkonstanten wiedergegeben und durch Berechnung der Potentialenergieverteilungen überschaubar gemacht werden. Die Ergebnisse werden als Basis für weitere Untersuchungen an phenylierten Di-, Oligo- und Cyclosilanen und -germanen dienen.

Die Messung der IR- und Raman-Spektren erfolgte an einem Perkin-Elmer-Spektrometer, Typ 325 bzw. an einem Spex-Ramalog, die Berechnungen wurden am Rechenzentrum der Technischen Universität Graz durchgeführt. Der Dank des Autors gebührt dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Überlassung von Geräten und Sachmitteln und Herrn Prof. Dr. H.J. Becher (Univ. Münster) für zahlreiche Diskussionen.

Literatur

- ¹ F. Höfler, Z. Naturforsch. 26 a, 547 (1971).
- ² F. Höfler, Z. Naturforsch. 27 a, 760 (1972).
- ³ F. Höfler und E. Hengge, Mh. Chem. 103, 1513 (1972).
- ⁴ H. Bürger, K. Burczyk, F. Höfler und W. Sawodny, Spectrochim. Acta 25 A, 1891 (1969).
- ⁵ F. Höfler, W. Sawodny und E. Hengge, Spectrochim. Acta 26 A, 819 (1970).
- ⁶ F. Höfler, S. Waldhör und E. Hengge, Spectrochim. Acta 28 A, 29 (1972).
- ⁷ F. Höfler, E. Hengge (und teilweise H. Mülleitner), Mh. Chem. 103, 1506 (1972).
- ⁸ F. Höfler, Mh. Chem. 104, 694 (1973).
- ⁹ H. J. Becher und F. Höfler, Spectrochim. Acta 25 A, 1703 (1969).
- ¹⁰ R. Mattes, W. Stork und I. Pernoll, Z. anorg. allg. Chem. 404, 97 (1974).
- ¹¹ W. Haubold und J. Weidlein, Z. anorg. allg. Chem., im Druck.
- ¹² F. Höfler und E. Brandstätter, Mh. Chem. 106, 893 (1975).
- ¹³ D. H. Whiffen, J. Chem. Soc. 1956, 1350.
- ¹⁴ F. Höfler, Mh. Chem. 107, 421 (1976).
- ¹⁵ J. R. Durig, C. W. Sink und J. B. Turner, J. Chem. Phys. 49, 3422 (1968).
- ¹⁶ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Berlin-Heidelberg-New York: Springer. 1966.
- ¹⁷ N. A. Narasimhan, J. R. Nielsen und R. Theimer, J. Chem. Phys. 27, 740 (1957).
- ¹⁸ H. Kriegsmann und K. H. Schowtka, Z. Physik. Chem. 209, 261 (1958).
- ¹⁹ C. V. Stephenson und W. C. Coburn, J. Chem. Phys. 42, 35 (1965).

- ²⁰ A. L. Smith, Spectrochim. Acta 23 A, 1075 (1967).
- ²¹ J. R. Durig, C. W. Sink und S. F. Bush, J. Chem. Phys. 45, 66 (1966).
- ²² W. F. Edgell und C. E. May, J. Chem. Phys. 22, 1808 (1954).
- ²³ R. Mattes und H. J. Becher, Z. Physik. Chem. [N. F.] 61, 177 (1968).
- ²⁴ M. L. Dubois, M. B. Delhaye und F. Wallart, C. R. hebdomad. Sé. Acad. Sci. 269, 260 (1969).
- ²⁵ A. L. Smith, Spectrochim. Acta 24 A, 695 (1968).
- ²⁶ H. T. Sumsion und D. McLachlan, Acta Cryst. 3, 217 (1950).
- ²⁷ C. Glidewell und G. M. Sheldrick, J. Chem. Soc. A 1971, 3127.
- ²⁸ P. C. Chieh, J. Chem. Soc. A 1971, 3243.
- ²⁹ P. C. Chieh und J. Trotter, J. Chem. Soc. A 1971, 911.
- ³⁰ V. Busetti, M. Mammi, A. Signor und A. Del Pra, Inorg. Chim. Acta 1, 424 (1967).
- ³¹ J. R. Durig und C. W. Sink, Spectrochim. Acta 24 A, 575 (1968).
- ³² J. R. Durig, K. L. Hellams und J. H. Mulligan, Spectrochim. Acta 28 A, 1039 (1972).
- ³³ K. M. Mackay, D. B. Sowerby und W. C. Young, Spectrochim. Acta 24 A, 611 (1968).
- ³⁴ R. J. Cross und F. Glockling, J. organomet. Chem. 3, 146 (1965).
- ³⁵ A. Gruger und J. M. Lebas, J. Chim. Phys. Physico-Chim. Biol. 62, 1318 (1965).
- ³⁶ A. N. Rodionov, Russ. Chem. Rev. 42, 998 (1973).
- ³⁷ R.J. H. Clark, A. G. Davies und R.J. Puddephatt, Inorg. Chem. 8, 457 (1969).
- ³⁸ R. E. Weston, A. Tsukamoto und N. N. Lichtin, Spectrochim. Acta 22, 433 (1966).
- ³⁹ J. R. Durig, C. W. Sink und J. B. Turner, Spectrochim. Acta 25 A, 629 (1969).
- ⁴⁰ M. C. Henry und J. G. Noltes, J. Amer. Chem. Soc. 82, 555 (1960).
- ⁴¹ H. Kriegsmann und H. Geissler, Z. anorg. allg. Chem. 323, 170 (1963).
- ⁴² L. A. Harrah, M. T. Ryan und C. Tamborski, Spectrochim. Acta 18, 21 (1962).
- ⁴³ R. C. Poller, Spectrochim. Acta 22, 935 (1966).
- ⁴⁴ T. S. Srivastava, J. organomet. Chem. 16, P 53 (1969).
- ⁴⁵ J. R. May, W. R. McWhinnie und R. C. Poller, Spectrochim. Acta 27 A, 969 (1971).
- ⁴⁶ C. Cerf, Bull. Soc. Chim. Fr. 1971, 2889.
- ⁴⁷ J. R. Durig, C. W. Sink und J. B. Turner, Spectrochim. Acta 26 A, 557 (1970).
- ⁴⁸ J. R. Durig, J. B. Turner, B. M. Gibson und C. W. Sink, J. Mol. Struct. 4, 79 (1969).
- ⁴⁹ J. B. Orenberg, M. D. Morris und T. V. Long, Inorg. Chem. 10, 933 (1971).
- ⁵⁰ H. Bürger, S. Biedermann, F. Höfler und K. Haßler, in Vorbereitung.

Korrespondenz und Sonderdrucke:

Prof. Dr. F. Höfler Institut für Anorganische Chemie Abteilung für Spektrochemie Technische Universität Graz Stremayrgasse 16 A-8010 Graz Österreich